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SUPERNOVAE, NEUTRINOS, AND NEUTRON STARS 

by 
H.-Y. CHIU 

Goddard Space Flight Center 
Institute f o r  Space Studies 

SUMMARY 

The final evolution of a pre-supernova star is reviewed. It is now 
believed that the supernova explosion of a star is f i rs t  triggered by the 
collapse of its core, followed by the sudden release of gravitational energy 
or the sudden ignition of nuclear fuel in the envelope. Among the subjects 
discussed herein are the causes for stellar collapse, the static structures 
of white dwarfs and neutron stars, the dynamic collapse of oversized neu- 
tron stars, angular momentum and stellar collapse, and the observable 
features of neutron stars. 
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SUPERNOVAE, NEUTRINOS, AND NEUTRON STARS* 

by 
H.-Y. Chiut 

Goddard Space Flight Center 
Instikite f o r  Space Studies 

1. INTRODUCTION 

It is now accepted with reasonable assurance that the supernova explosion of a star is first 
triggered by the collapse of its core,**followed by the sudden release of gravitational energy o r  
the sudden ignition of nuclear fuel in the envelope (References 2-6). A number of suggestions 
have been made as to  the physical processes which may cause the core to  collapse suddenly. 
Among the most promising mechanisms are the disintegration of iron (the then most abundant 
element) into helium at a temperature of 7 x lOg0K (Reference 3), and the neutrino process which 
dissipates stellar energy at a drastic rate of l o z 3  ergs/cm3-sec at the same temperature (this 
rate is to be compared with the stellar energy density which is loz4 ergs/cm3 at the same tem- 
perature and a density of lo6 gm/cm3) (Reference 5). 

As we shall see later, although these two physical processes give r i se  to  different kinds of 
instabilities, nevertheless they are capable individually of triggering the sudden release of either 
gravitational or  nuclear energy of a star. A detailed computation is underway to  determine the 
range of masses for which either of these two processes comes into play first.*** 

A sudden release of nuclear or  gravitational energy in the envelope will cause it to expand 
quickly (References 3 and 4). The expanding envelope is directly observable. Owing to  its com- 
plexity and its dynamical nature, only qualitative conclusions have been presented. Even so, in- 
teresting results regarding the origin of cosmic rays (Reference 7) and the origin of elements 
have been obtained, and qualitative agreements with observational results a r e  quite satisfactory 
(References 3 and 6). 

What is left as the core collapses is not immediately clear. In the past, it was usually assumed 
that ordinary white dwarfs (whose mean density is around lo6 gm/cm3) are remnants of supernova 
explosions. The large number of white dwarfs discovered (around 10 percent of the stars in the 
solar neighborhood are white dwarfs), however, cannot be explained by the relative scarcity of 

*To be published in Annals of Physics.  
tCoddard Institute for Space Studies and the Department of Physics,  Columbia University. Mr. Chiu i s  a NRC-NAS Senior Research 

SA more complete description of stellar evolution along the present trend of thought may be found in Reference 1. 
Associate and also a Research Fellow, Academia Sinica, Republic of China. 

**The concept of stellar collapse was f i r s t  introduced by G. Gamow and M. Schonberg (Reference 2). 
*'*H. Y. Chiu and E. E. Salpeter, work in progress. 

1 



supernovae per galaxy (which occur at a rate of around 1/50 - 300 years) (References 8 and 9). 
The other alternative that neutron stars may be the remnants of supernovae has so f a r  been ac- 
cepted only with skepticism* (References 10 and 11). Moreover, there is no astronomical evidence 
yet that such stars even exist. 

Theoretically there a r e  also some difficulties. At least one type of pre-supernova stars is 
believed to have a mass of around 3 0 ~ , (  M, = solar mass = 2 x gm) of which around20 M, be- 
longs to  the core. Since there exists an 'upper limit (% 0.8 M,) for the mass of a neutron star (and 
also white dwarfs) beyond which no stable configuration exists, what will be the fate of the massive 
stellar core? It is unlikely that a large fraction of the 20 M, which the core possesses will be 
blown away by any reasonable means. Since the composition of the core is believed to be mainly 
iron - the end product of thermonuclear evolution, no nuclear energy is available and gravita- 
tional energy is incapable of doing so (Section 3.1). 

It was also suggested that the collapse would initiate, in addition to an outward shock which 
ejects matter, also an inward shock wave which compresses the core quickly (Reference 4). When 
the density reaches l o i 4  gm/cm3, the inter-nucleon distance will be of the order of the size of the 
repulsive core ( *  
core. The rebounded shock wave will expand the star to the normal density possessed by a white 
dwarf, and will eject more mass from the star. This hope, however, was relinquished recently 
because of neutrino processes. Neutrino processes involving electron neutrinos and ,U -neutrinos 
a r e  extremely efficient in dissipating energy - the relaxation time being around 
T = 1012'K. This would be the temperature of a medium if it is compressed adiabatically to a 
density of lo1' gm/cm3. This relaxation time sec) is extremely short as.compared with 
the time the compression takes place, which is calculated to  be around sec. Hence, once 
compressed to such high densities (2 10I3 gm/cm 3), the star will lose all its energy; and it can- 
not restore itself to  a normal density. This is discussed in more detail in Section 3.4. 

cm), and the shock wave will be rebounded by the hard nuclear 

sec at 

So far, no stars in any way resembling neutron stars have been discovered. We would like 
to point out that this is not evidence against the existence of neutron stars. Our atmosphere 
strongly absorbs electromagnetic radiation whose wavelengths a r e  less  than 3000A. The total 
energy output by a neutron star is proportional to the fourth power of its effective surface tem- 
perature Te . The part of neutron star radiation that will pass through our atmosphere, however, 
increases only as T, when T>> 10 40K (Section 8.3). For a surface temperature of 106'K, the total 
energy output of a neutron star is around that of the sun, but the part of radiation that can pass 
through our atmosphere is about 
seen a t  even a reasonable distance (say, 10 light years). 

of that of the sun a t  the same distance. This is too faint to be 

We shall discuss the nature of various problems related to the formation and detection of 
neutron stars. Although in the past, several pieces of excellent and wonderful work have been 
done,tthe problem in the large is still unsolved. In this paper we do not attempt to solve 

*However, W. Baade and F. Zwicky believed that supernova explosions are resulted from the formation of a neutron star (Reference 12). 

tThese wuaks are summarized in Section 5.6. References to these w a k s  may also be found there. 
This belief is no longer supported by other evidences; s e e  Reference 3. 
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this problem. We should like, however, to emphasize the difficulty of the problem and the 
possible direction of a solution. 

Since rotational energy may be quickly dissipated by gravitational radiation when the collapse 
takes place, we shall ignore rotational effects in our discussions. This is discussed in particular 
detail in Section 7. 

2. CAUSESFORCOLLAPSEOF A STAR 

A star is, in the large, a mechanical system in quasi-hydrostatic equilibrium. It has a neg- 
ative total energy and, in order t o  be in a stable equilibrium, its total energy must also be a 
minimum on its energy surface with respect to  small perturbations. Moreover, the energetics of 
a stable star must be such that hydrostatic equilibrium has a useful meaning. When either of 
these two conditions is not fulfilled, the star will be unstable and, since its total energy is neg- 
ative t o  start with, collapse will take place. 

When the first condition is not fulfilled, the star is said to  have hydrostatic instability. When 
the second condition is not fulfilled, the star is said to have dynamical instability. In the following 
we study them in more detail. 

2.1. Hydrostatic instability 

Here we are concerned only with the stability oft a star in hydrostatic equilibrium under small 
adiabatic perturbations (Reference 13).* Let E, be the total energy of a star. E , i s  given by 

ET = - G JoM + JoM E dm , 

where the first term represents the gravitational energy and E is the thermodynamic energy per 
unit mass, G is the gravitational constant, m is the mass of the star within a sphere of symmetry 
of radius r, and M is its total mass. In order that the star be in equilibrium, it is necessary that 
the first variation of E, be null: 

and, in order that the equilibrium be a stable one, the sign of the second variation must be 
positive - that is, 

* A l s o  an unpublished paper by F.  J .  Dyson: "Hydrostatic Instability of a Star." 
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One can demonstrate that Equation 2.2 gives r i s e  to  the equation of hydrostatic equilibrium 
and Equation 2.3 gives rise to the following inequality:* 

where P is the hydrostatic pressure and v is the volume of the star; ris the adiabatic exponent 
and is defined as 

The subscript means that this differentiation is carried out under an adiabatic process. 

One form of r ist (see footnote, page 3)  

where v is the specific volume (volume per unit mass) and P i s  the gas pressure. Assuming that€ and pV 

a r e  all functions of temperature alone, and approximating A v  by V, one obtains the following form f o r r :  

Normally, for a non-relativistic gas, Pv = 2/3 E ;  hence r = 5/3. For a relativistic gas, PV = 113 E ;  

hence 
of transition has to  be included in E. Thus, when phase transition occurs (such as ionization dis- 
sociation or nuclear disintegration) the value of r w i l l  drop to below 4/3. For iron-helium transi- 
tion, the heat of transition c t  is roughly 2.2 Mevhucleon. The transition occurs at a temperature 
of 8 l o g O K ,  at which the thermal energy is around 1 Mev/particle. Since the .electrons are quite 
relativistic, PV 5 1/3 E = ,  where E =  is the thermal energy for the electrons. Using the value 

lected), we find that 

= 4/3 .$ If, in a particular temperature regime phase transition takes place, the energy 

1 MeV, and writing E 2 t E t  (thermal energy of nuclei and radiation energy may be neg- 

1 
3 ‘e 

r = i t -  2 1.1 . 
- 

+ E t  

*F. J .  Dyson has presented a concise derivation of Equation 2.4 (see footnote, page 3), which i s  briefly described in Reference 5. 
?Derivation of Equation 2.6 may be found in Reference 5. 
*Although Equation 2.7 is an approximate expression for r, in these two limiting cases  it gives the correct value for r. 
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We remark that the dissociation of 
iron into helium is not the only mecha- 
nism that will cause r to drop to below 
4/3. Figure 1 shows r as a function of 
temperature for a number of densities 
for a gas in equilibrium with electron 
pair creation (Reference 14).* One 
finds that the value of r m a y  drop to  
below 4/3 if the density is low enough. 
For the density-temperature region one 
usually considers inside a star, the 
creation of electron-positron pairs will 
not cause a star to  collapse. Only for 
extremely massive o b  j e c t s, which 
Fowler and Hoyle considered as pos- 
sible radio sources, will the creation of 

for the collapse of a s t a r  (Refer- 

r1 

1.20- I 1  , 1 1 1  I I I I I  I I I I  I I  I I l l  
0.5 0.7 1.0 1.4 2.0 3 4 5 6 7 8 10 

electron-positron pairs be responsible T ( B K " )  

Figure 1 -The odiobotic exponent r = - for an electron 

gas in equilibrium with rodiation and pair creation i s  plotted as 

The disintegration of iron into o function of temperature fora number of densities. The numbers 

on the curves refer to log,,, (p/po),where p, = 2 x lo6 gm/cm3. 

ence 15). *(dP)., 
helium, however, occurs over an ex- 
tensive (though narrow) temperature- 

WIDTH OF 
TRANSITION REGION 

- 

100% HELIUM - 

- 

4 5 6 7 8 

density region as indicated in Figure 2. 
Hence, every star which evolves with 
i n c r e a s i n g  temperature will come 
across such a region. In these regions 
instabilities may occur. Although the 
sign of the integral in Equation 2.4 has 
not been proven to be generally negative 
for a star in this density-temperature 
region, in certain simple cases (Refer- 
ences 4 and 5) it has negative values. A 
more extensive work to  study this kind 
of instability is underway. 

9 2.2. Dynamical Instability 
of a Star 

While a star is stable in a hydro- 
static sense, it may still be unstable 

I 

5 

105 2l 3 I 

T ( B K " )  

Figure 2-The temperoture-density relation, for which the equi- 
librium rotio Fes6 to He4 i s  unity, i s  plotted. The transition 
region has a width of oround A T  x lo9 O K .  

*Also  unpublished material by H. Y. Chiu and S. Tsuruta: "Thermodynamic Properties of Hot Matter." 
tsee foomote ***on, page 1. 
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dynamically, and vice versa. The dynamical stability of a star is related to  the energy flow inside 
a star. 

From the condition for hydrostatic equilibrium (8 E, = o)one may obtain the equation for 
hydrostatic equilibrium : 

where p is the density and m was defined previously and is given by 

m = [4nr2pdr  . (2.10) 

A more detailed discussion of Equations 2.9 and 2.10 may be found in standard textbooks (Ref- 
erence 16). Equation 2.9 is valid only when all matter inside a star does not have macroscopic 
motion, When a star is contracting rapidly, one must include the acceleration i (where v is the 
velocity and i its hydrodynamic derivative). In the absence of relativistic effect, and assuming 
spherical symmetry, both v and i a r e  in the direction of r (notation: vr). Hence, the equation for 
hydrostatic equilibrium becomes 

Gr is given by 

(2.11) 

(2.12) 

It is more convenient to  use m as one of the two independent variables since m is independent of t . 
Then Equation 2.11 becomes (we now drop the subscript r on v and 6 ) 

Differentiating Equation 2.10, one obtains a relation between r and m: 

Further, we also have the equation of continuity: 

av ,h + p d i v v  = ; + p a r  = 0 . 

(2.13) 

(2.14) 

(2.15) 
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The contraction of the star is caused by some fast energy dissipation process (like the neu- 
trino process) which depends only on the density p and the temperature T. Let the rate of energy 
dissipation per unit mass be ed (p,T). The energy balance equation is 

(2.16) 

where S is the ,entropy per unit mass.* F'urther,'thermodynamics supplies us with the following 
relations: 

Hence, the four equations, Equations 2.13 through 2.16, with their four unknown variables 
(p.T, r , v ) ,  can now be solved in te rms  of m and t (which are the independent variables). The 
boundary conditions are: 

(2.18) 

dp At m = 0 :  

At some value of r:  v , V are finite; and p and T tend to  zero simultaneously; 

r = v = j = o  , p and T are finite, and dm a m - ' I 3 ;  

At t = 0 :  p = p, (m) , T = To(m), v = v ( m ) ,  C = ;(m). 

These boundary conditions are physical restrictions on the type of solutions one expects from 
the set of nonlinear differential equations, Equations 2.13 through 2.16. Their meaning is almost 
self-evident. Equations 2.13 through 2.16 with the boundary condition Equation 2.18 describe the 
non-relativistic collapse of a star. If v approaches a certain limit which will be discussed below, 
it may happen that no solutions could be found which are continuous in both m and t and satisfy the 
boundary condition (Equation 2.18). In such cases a shock wave will be developed. The behavior 
of some simple shock wave solutions has been studied by Colgate el al. (Reference 4). 

We now study the sign of 6 and the physical limit on v.  Let W be the gravitational energy of 
the star and E its total thermodynamic energy; then the total energy of the star E, is given by 

E, = W + E .  (2.19) 

The virial theorem givest 

- W  = ( 1 + 7 ) ) E  , (2.2 0) 

*This equation is derived on the assumption that the rate of energy transfer by photon is very small compared with the rate of energy 

.tSee Appendix A. 
dissipation by neutrinos. For the justification of this assumprion, see Reference 5. 
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where rl is a slowly varying constant depending on the gross thermodynamic properties of a star. 
For all cases, 1 > 7 > 0.  At T % 6 x lo9  OK, 77 2 0 . 1 . *  

Approximately one can write 

(2.2 1) 

where R is the radius of the star, and also 

E = J c d m  2 M . R g T  , (2.22) 

where E ,  the thermodynamic energy per unit mass, is approximated by the expression for a per- 
fect gas: 

E 5 R g T  (2.23) 

and R g  is the gas constant (Rg = 8.2 x l o 7  in cgs units . From Equations 2.21 and 2.22, the fol- 
lowing relations are obtained: 

) 

(2.24) 

(2.2 5) 

Since gravitational contraction is the only energy source available at T 2 4 x lo9 O K ,  above this 
temperature the energy balance equation becomes 

(2.26) 

The energy dissipation function e d  for the annihilation process (which is the most important one 
in this temperature density region) is 

T9 
‘d = ‘ 0 7  ’ 

where e o  = 4 x 10-’5 e r g ~ / ( ” K ) ~ - s e c - c m ~  

(2.27) 

*See Appendix A. 
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From Equation 2.24 we can also obtain a dynamical relation between T and p. Since 

4 
p = 7 7rR3 , 

the relation is 

.A is a constant defined by the above equation. 

From Equations 2.25 through 2.28, we obtain the following relations: 

and 

4cz - - + - e  
4C dR dZR 

dt2 R5 dt R9 
~- _ _  - - -  

(2.28) 

(2.29) 

(2.30) 

c is a constant depending on M and other gas characteristics. We now identify v with dR/dt and V 
with d2R/dt2. 
inward, with rapidly increasing speed. Although Equations 2.29 and 2.30 a r e  only approximate 
solutions, they do indicate strongly that a stellar collapse will eventually occur. 

They both have unchanging negative signs which indicate that the s tar  is collapsing 

The limit for G is set by the gravitational field of the star. Thus, 

(2.3 1) 

Equation 2.31, together with Equation 2.30, sets  a lower limit on R below which no hydrostatic 
equilibrium is possible: 

1/7 

.>[$I R, , (2.32) 

A similar result may be obtained by considering the upper limit for V. The upper limit for 
v is set  by the gravitational energy available at radius R: 

1 M ~ G  
T M V ~  < R  . (2.33) 
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Equation 2.33 is identical with Equation 2.32 apart from a numerical factor close to  unity. 

Let M = 20 M,, 77 = 0.1; we find the limiting radius R ,  t o  be 

R ,  z 109cm , 

C = 1.08 x l O 3 I  (in cgs  units) . 
The corresponding temperature as estimated from Equation 2.28 is roughly 3 x lo9 OK. This tem- 
perature is below the iron-helium disintegration temperature (Z  6 x lo9 OK.) However, we re- 
mark that the above estimate is very crude. The only conclusion we can draw is that both 
the annihilation neutrino process and the iron-helium disintegration process are capable of 
causing a massive star t o  collapse. To answer this question more quantitatively, one needs to  
find out the sign of the integral (Equation 2.4) and to  solve Equations 2.13 through 2.17 with the 
boundary condition Equation 2.18 and appropriate input parameters. 

The steep dependence of i~ on 1/R (a T) as shown in Equation 2.30 indicates that the collapse 
may take place suddenly. 

3. PHYSICAL EVENTS AND CONSEQUENCES OF STELLAR COLLAPSE 

We have demonstrated in the last section that, when the gravitational contraction of a star 
(caused by neutrino emission process) reaches a certain stage, collapse must take place and the 
concept of hydrostatic equilibrium loses its meaning. We shall find out whether the collapse will 
stop and whether the star can eject enough mass so as to  become an ordinary white dwarf. 

3.1. Impossibility of Ejecting Enough Matter To Become a White Dwarf 

In order that a massive core may eject enough mass to become a white dwarf, some physical 
mechanism must be present to eject almost all of its mass into space. 

It is difficult to imagine a practical mechanism t o  achieve this. However, we shall now dem- 
onstrate on energetic grounds that a star cannot eject enough matter into space so that the re- 
maining star becomes a white dwarf. The gravitational energy of a star is mz/R. Since no cold 
star of mass > 1.4 M, may exist (see Section 4), an energy of the amount 

R 

is needed to  dissociate the star from its gravitational binding. This energy must be suppliedgrav- 
itationally by the remaining core of the star of mass aroundM,, radius r. Hence, to the first 
approximation 

10 



Consider M z 20 M,, and a radius of 10 cm (which corresponds to  a temperature of around 
1 Mev when instability occurs); we find r z R/400. The density of the remaining core will be 
(400)3 = 6.4 x lo7 higher than that of the star before collapse takes place. From Equation 2.28 
the density at the instant of collapse is estimated to  be roughly 10 gm/cm '. Hence the remaining 
core will have a density of at least 10 l 3  gm/cm3, which is the density of a neutron star. 

This example is cited just to demonstrate that, when a massive star collapses, there is no 
possibility that the remaining core will be a white dwarf. 

Moreover, most of the energy released during the gravitational collapse of a s ta r  will be in 
the form of neutrinos and cannot be of any practical use. This will be discussed in more detail in 
Section 3.4. 

We now examine the thermodynamic properties of dense matter and the corresponding stars. 

3.2. Thermodynamic Properties of Degenerate Matter a t  Near Zero Temperatures 

At zero temperature and reasonably low density(p 6 10 l 2  gm/cm3) the energetics of an ionized 
gas a r e  dominated by the electrons. The available energy states are occupied up to  a Fermi 
momentum P, corresponding to  a Fermi energy E,. The relation between the electron number 
density ne and Fermi momentum p, and density p are as follows:* 

87"3 c3 
x 3  = 5 . 9  x i o z 9  x3/cm3 , -~ 

3h3 "e - (3.3) 

where A and Z are average values for the mass number and the atomic number for the gas. The 
electron Fermi energy E, is given by 

Salpeter (Reference 18) found that in the stellar regime the pressure energy density relation 
is very well described by that for a perfect Fermi gas. All other corrections (Coulomb 

*For a description of the theory of a perfect Fermi gas, see Reference 17. 
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correction, exchange effect, ion motion, etc.) are very small .  These relations for a perfect 
Fermi gas are (Reference 17): 

7rm4c5 p = -  
3h3 f ( x )  6.01 x loz2 f ( x )  d/cm2 , (3.6) 

(3.7) 

f ( x )  = x ( 2 ~ ~ - 3 ) ( x ~ + l ) ~  + 3 s i n h - '  x , (3 .a 

g(x) 8x3[(xz + l )% - 11 - f ( x )  , (3.9) 

where 
express ion: 

is the kinetic energy density of the electrons. We have the following asymptotic 

f ( x )  -3 3 x 5  8 - 1  

and 

Hence 

2 
+ T E k i n  

1 
x E k i n  

and 

x + o ,  

x + m ,  

x + o ,  

x - m .  

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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3.3. Composition o f  Degenerate Matter at  Near Zero Temperatures 

(Z, A) 
E, 
loglqp 

If the energy of an electron is greater than the E = ,  the beta-decay energy for electron emission 
(counting only the kinetic energy) of the nucleus (El, A ) ,  then inverse beta reactions involving 
( Z  , A )  will occur: 

~~~ 

(2636) (28,621 (28,641 
0.6 2.5 3.9 
7.15 8.63 9.15 

e- + (Z,A)  + (Z-1,A) + v . (3.16) 

(Z, A) (30,76) 
E, 8.5 
loglo p 10.13 

If E, > c Z ,  then the nucleus ( Z ,  A) ceases to  be stable and undergoes inverse beta decay to  the 
nucleus (Z-1, A)  . The nucleus (Z- l ,A)  cannot decay because all electronic states areoccupied up 
to  the Fermi energy E, > E = .  If the nuclei are in equilibrium, the composition is easily calculated. 

(30,78) (30,80) 
9.5 14.8 
10.28 10.84 

By minimizing the quantity 

B(Z,A) - ZE,' 
b* = A (3.17) 

(where E; is the Fermi energy of the 
e l e c t r o n  gas minus the neutron- 
hydrogenatom rest  mass energydiffer- 
ence), Salpeter (Reference 18) calcu- 
lated the equilibrium composition for 
cold degenerate matter. His result is 
shown in Table 1. 

When p? 10 ', for the electron gas 
is already very close to 4/3 (Figure 1). 
The gas sphere is only marginally 
stable against hydrostatic instability. 
The inverse betareactions will  cause 
to be less  than 4/3 for the density 
r e g i o n p  = 107 to p = gm/cm3. 
Wheeler (Reference 19) has computed 
the ratio of P t op4 /3  ; he finds that the 
ratio actually decreases with p in the 
above density region.* His result is 
shown in Figure 3.  

If all nuclei are not in thermody- 
namic equilibrium, then the transition 
may not take place as described by 

Table 1 

Equilibrium Composition of Cold Matter* 

10-16 

10-17 

P 
"413 
- 

10-18 

10-19, 
1 

-1 
9.69 9.87 

(32,90) (38,120) 

11.28 11.53 neutrons 
20.6 124.0 

1 1 1 1 1 1 1 I I I  I I I I I I t  

30 35 40 

log10 n ( particles/cm3 ) 

Figure 3-Theratio P/n4/3(where n i s  the total numberdensit of 
nuc1eons)isplottedasafunctionof n .  In between n = 1 0 3 1 ~ m 3  
and n = 103*/cm3 (p = lo7 + 1.67 x 1013 gm/cm3) P /n4 l3  
decreases as n increases indicating that the power dependence 
of P on n i s  less than 4/3; this result i s  due to Wheeler. 

*At zero temperature r = p/P d dp If P is expressed a s  P = Po pr, where Po is a proportionality constant, then r is the adiabatic ( I t  F1' ). 
exponent. 
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Table 1. Cameron (Reference 20) has studied the rate of nuclear reactions at high density (pycno 
nuclear reactions). He found that most nuclear reactions leading towards equilibrium state wil l  
take place spontaneously even at zero temperature when the density is greater than lo9 gm/cm3. 

We may therefore safely expect that the composition of matter at p > lo9 gm/cm3 will be rea- 
sonably given by Table l under equilibrium conditions. Wheeler's result (Figure 3) indicates that 
in-between the density-temperature region P = lo8 to  p = 10" gm/cm3 there are no equilibrium 
configurations for a star. Harrison, Wakano, and Wheeler (Reference 19) have also studied the 
structure of stars at zero temperature; the result is shown in Figure 4, in which the mass as a 
fcmction of stellar density is plotted. In certain density regions where inverse beta reaction occurs, 
the mass of the star decreases with in- 
creasing central density, indicating that 
such configurations are unstable. 

3.4. Neutrino Production at  
Near Zero Stellar 
Temperatures 

We now turn to the energetics of 
dense matter at non-zero temperatures. 
As long as kT < < E,, the thermodynamic 
properties of matter a r e  not different 
from thatfor the zerotemperaturecase. 
Hence we shall only consider the case 
where kT 2 E,. It may be pointed out 
that, as long as r is close to 4/3, the 
relation T a p113 (Equation 2.28) is ex- 
pected to hold for the temperature and 
density of a star during its evolution. 
If E, >> mcz , E, a p 1 1 3 .  Hence the ratio 
kT/E, will be roughly a constant if 
energy dissipation is not substantial; 
otherwise it will decrease. 

In the following we shall assume 
that the ratio kT/E, will be roughly 1. 
With this assumption, if we find the re-  
laxation time for losing energy to neu- 
trinos is short compared with the time 
fo r  the star to restore to i ts  original 
density, then we a re  back to the zero 
temperature case. 

At T = 6 x lo9 "K(kT z 0.5Mev)the 
most dominant neutrino process is the 

0 - v  

\ 

y 
L 1 1 1 - L  1 .o 1 1 I 

OO 0.5 

MJM, 

Figure 4-The mass-central density p, relation for zero tem- 
perature stars. Given a central density, with the equation of 
state described in Figure 3 and Section 3.3, the mass may be 
integrated by using Equations 2.9 and 2.10 or Equations 5.2 and 
5.3. Curves marked CH show the nongeneral-relativistic result 
of Chandrasekhar (Reference 17), and the curve marked 0 - V  i s  
the general relativistic result of Oppenheimer and Volkoff for 
an ideal Fermi gas (Reference 27). This solid curve i s  due to 
Wheeler et al. (References 19 and 25). 
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annihilation process (References 21, 22, and 23): 

(3.18) 
- 

y c e -  + et + v e  + v e  . 

At higher temperatures then neutrino processes also must be considered. At low density ( p  < lo7 
gm/cm3, say) the mean free path of neutrinos is longer than the physical dimension of the star. 
At higher density, the mean free path of neutrinos is no longer compared with the physical 
dimension of the star. The rate of dissipation of neutrinal energy is then less than the production 
rate. 

At kT 2 mpc2, the creation of 71 meson pairs and p meson pairs is not negligible. Because the 
neutrinos associated with the p meson do not interact with electrons to the lowest order, the dis- 
sipation of stellar energy through p-neutrino production is more important. We shall also include 
this in our discussion. 

(a) ElecCvon-PosiCvon Pair, n and p Pair Densities 

The number density for the electron pair created, under the condition E,/kTz 1, is roughly 
given by (see, for example, Reference 23) 

where 

(3.19) 

(3.20) 

Numerically 

Te = 6 x lOg0K . (3.21) 

/ 
1 / 2  Since T >> Te , we m a y  use the approximation (1 + x') 

we have 
2 x. Changing variables from x to u = x B e ,  

u2du . 
e x p u t  1 

8mn; c3 

h3 
- -  

"e - (3.22) 

Since 

(3.23) 
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where 5 (  z)  is the Riemann’s zeta function, we find numerically that 

ne = 4.4 x 1030 e: . 
For the case of n or p mesons we may define 

kT T 
*7? = -  = - ’  mnc2 TTr 

TP = 1.24 x 10f20K , 

T,, = 1.65 x 10120K . 
If we neglect the factor unity in Equation 3.19, we have 

n,, = 5.8 x 10’’ 8,K, (k) , 
n P = 1.54 x lo3’ ePK2 (t) , 

where K,(z) is the modified Hankel function 
with the following, asymptotic expression: 

Table 2 lists the number density of electron 
pairs andp meson pairs for T = 10”J”K to  
10 1 2 OK. 

(3) Neutrino Cross Sections 
at High Energy 

When the energy difference between neu- 
tron and proton can be neglected, the cross  
section for first order neutrino process is 
given by 

(3.33) 
V 07 CGZpy2 , 

Table 2 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

Electron, 7~ Meson, and ,u Meson Number Densities 
as a Function of Temperature 

(T i s  measured in O K ;  n in particles/cd). 

10 
10.2 

10.4 

10.6 

10.8 

1 1  

11.2 

11.4 

11.6 

11.8 

12 

12.2 

12.4 

12.6 

log 10 ”e 
~~ 

31.31 
31.91 

32.51 

33.1 1 

33.71 

34.31 

34.91 

35.51 

36.1 1 

36.71 

37.3 1 

37.91 

38.51 

39.1 1 

log 10 np 

-- 
-- 
-- 

21.7 

27.1 

30.5 

32.8 

34.4 

35.6 

36.5 

37.2 

37.9 

38.5 

39.1 

log 10 n7? 

-- 
-- 
-- 

19.27 

26.37 

28.47 

31.69 
33.69 

35.09 

36.18 

37.0 
-- 
-- 
-- 
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where G is the weak interaction constant, v is the relative velocity of the initial system of parti- 
cles (2 c ) ,  and p, is the f inal  neutrino momentum. c is a numerical constant listed for a number 
of reactions in Table 3. 

Table 3 

Neutrino Reactions 

e - 1  

e - 2  

e - 3  

e - 4  

P - 1  

P - 2  

P - 3  

P - 4  

P - 5  

React ion c c/G2PYZ 

1 /377 

5.5/77 

5.5/77 

a / r  

1 /377 

5.5/77 

5.5 /77  

Lifetime = 2 . 2  x 10-8 s e c  

Lifetime = 2 . 2  x 10-6 s e c  

3.5. Relaxation Time for Cooling of a Collapsing Star 

At high temperature the energy difference between proton and neutron may be neglected. If 
the relation between the temperature T and the density p is given by* 

T P (3.34) 

the neutrino yield from electron-neutrinoprocesses will be roughly the same, except the photo- 
neutrino process e - 4 which is down by a factor of a h  % 1/400. The p -neutrino processes show a 
wider variation. All p capture or annihilation processes have roughly the same cross  section as 
the electron process, as is expected from the theory. However, 7~ andp mesons can decay into 
electrons and neutrinos. The rate of decay, to the extent that degeneracy is neglected, is indepen- 
dent of the energy (apart from a time dilatation factor). Up t o  a temperature of x 10120K, 
p -neutrino emission from .rr-decay is the most important process. 

As  the density of the star increases, the mean free path of neutrinos becomes smaller. Once 
the mean free path of the neutrinos becomes smaller than the dimension of the star, the neutrino 
energy loss rate is no longer the same as the production rate. Let the radius of the star be R, the 

*Equation 3.34 is consistent with the assumption that EF/kT = 1. 
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mean f r ee  path for neutrinos be A , the total stellar neutrino energy content be U,; then the neutrino 
luminosity L, for a star is 

(3.3 5) 

Equation 3.35 has the following interpretation: When X = R ,  the neutrinos leave the star with the 
velocity of light and the time constant for doing this is just R/c, the time of transit across the star 
with a velocity of light. When A < R, neutrinos on the average scatter R/A times before they leak 
out of the star: Its path length is approximately increased by a factor of R/A. Hence Equation 3.35 
describes the rate of decay of stellar neutrinal energy. The neutrinal energy content of the star 
may be estimated in the following way: The average energy of each neutrino is around kT . If all 
neutrinal states are rilled up, further neutrino emission processes a r e  inhibited. The total energy 
content allowable to  neutrinos is of the same order as the energy content of the electron pairs, 
which is of the same order of magnitude as the total energy content. 

A recent experiment demonstrated that the neutrino associated with electrons (e-neutrino) 
and the neutrino associated with p mesons b-neutrino) have different quantum numbers (Refer- 
ence 24). That is, a p-neutrino cannot induce an inverse beta reaction: 

nor can an e-neutrino induce inverse p capture reactions: 

I 

i (3.3 7 )  

Since the average energy of p-neutrinos coming from n-decay and p-decay is of the order of 
mpc2 (or less), inverse p capture reaction cannot occur. Until kT z mpcz (T 5 10l2 O K ) ,  the number 
density for p mesons is small. At the temperature (T = 1.6 
to  n decay becomes very important, the mean free path for v*-p scattering is lo8 cm, which is 
around the radius of the star (2 7 x lo7 cm) . Hence p-neutrinos can dissipate stellar energy 
rapidly while e-neutrinos cannot. Table 4 summarizes o w  result. The relaxation time for dis- 
sipating stellar energy is shortest at roughly T = 6.3 x 10'OOK, and again at T 2 4 x 10" K. The 
corresponding relaxation times a r e  roughly 3 x and seconds, respectively. This is 
roughly the time scale for the star to  relax to the zero temperature configuration discussed 
previously. 

10 %) when the loss of energy due 

Since this time scale is of the same order of magnitude for light to travel across the star, we 
conclude the core collapses under zero temperature conditions (E,/kT >> 1) . Colgate's proposal 
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Table 4 

Neutrino Loss Rates in  a Neutron Star. 

1.6 x 10” 

6.3 io 1 1  

I Energy Neutrino Production Mean Free Path Radius of Relaxation Time 

Density Rate (ergskec-cm3) (cm) Star (set) Temperature Density 

(gm/cm3) (ergs/“) ve vP v e  (4 ue 
(“ K) 

6.3 x lo3’ Equilibrium 2 x 2.5 x 10“ > Star 

4 1032 Equilibrium 5 x 1037 4 x lo3 > Star 
I I 

~~ ~~ -~ 
-- 109 1 -- 1010 1.6~ 1p6 loz6 -- 1010 107 

4 107 1027 3 x  1027 -- 1.6 log -- 6.3~ lo8 3 x  lo-’ -- 

1.6 108 6.3 1027 2 1029 4 x  10l2 2.5 x lo8 > Star 4 x  lo8 3 x  10-2 -- 

6.3~ lo8 4 x  loz8 1.3 1031 7 1021 4 107 > Star 2.5 x lo8 3 x -- 

2.5 109 2.5 1029 1033 9 x 1028 6.3 x 106 > Star 1.6 x lo8 0.1 3 

1012 

I 10” 10 l o  1.6 x 1030 Equilibrium lo3’ 106 > Star 

2.5 x 10 l 2  2.5 x 1033 Equilibrium Equilibrium 6 x lo2 8 Star 

ioT3 1.6 x Equilibrium Equilibrium -- 2 Star 

108 

6.3x 107 

4 x  107 

2.5 107 

1.6 107 

io7 

0.3 0.1 

0.5 5 x  10-4 

1 l 3 x  10-5 I 
-- ~ 10-5 



(Reference 4) that a shock wave will first compress the star into neutron star density, that it will 
be rebounded to restore the core to  normal density, is somewhat unrealistic. 

We have not included in our calculations the red shift of neutrinos due to the gravitational 
field of the star. The red shift caused by the gravitational field of the star will at most decrease 
the net loss energy rate  by a factor of 2 (Section 8.2, and also Reference 48). If the red shift 
becomes much larger, then the star approaches a singular position which we shall soon discuss. 

4. STATIC STRUCTURE OF WHITE DWARFS AT ZERO TEMPERATURE 

Using Equations 3.6 and 3.7 as equations of state, Chandrasekhar (Reference 17) integrated 
Equations 2.9 and 2.10 to  obtain the static structure of white dwarfs. His result is shown in Fig- 
ure 4 together with Wheeler's, and Oppenheimer and Volkoff's, results. The most interesting 
feature is that the central density (and the central pressure) become infinite when the mass is still 
finite. The limiting mass he obtained is 5.75MJp: where pe = LAL,'LzL. Taking the most popular 
value of pLe = 2 ,  the limiting mass is around 1.44 M@ . 

Salpeter* worked out an intuitive derivation of the limiting mass, which is reproduced below. 
The virial theorem tells us that (Equation 2.20) 

Let Ee be the kinetic energy per electron. Then 

and 

M = Npemp . 

Hence 

'Privete communication. 
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Let re be the average value of the inter-electron spacing and p, be the average momentum; then 
the uncertainty principle gives 

rep, 2 -li . (4.4) 

Considering only the equal sign case, we find, from the definition of E, and Equation 4.4, that 

P, " *,c 1 (4.5) 

where ro = -h/m,c is the Compton wavelength for an electron. Combining these two equations, let- 
ting s = re/ro,  one can write 

(4.6) 

Wheeler (Reference 25) has checked the accuracy of Equation 4.6 against the more complete 
formula Equations 3.6 and 3.7; he finds the maximum deviation is around 8 percent. Since 
R z N1/3r,, in substituting Equation 4.6 into Equation 4.3, one obtains the following expression: 

where 

-3/2 

NO = [TI z m,; (4.8) 

No is a characteristic number and N, is the number of particles of the sun. When N <No, it is pos- 
sible to  find a value of s such that Equation 4.7 is satisfied. When pd N > No, it is not possible to  
satisfy Equation 4.7 with a positive value of S .  Hence, there exists a limiting value of mass be- 
yond which no static equilibrium structure is possible. 

Long before the density p becomes infinite, inverse beta reactions described in Section 3.3 
will occur and Chandrasekhar's description will no longer be valid. However, this occurs at a 
mass very close to  his limiting mass; this is shown in Figure 4. 
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We believe the structure of white dwarfs is well understood. Although the density and the 
pressure may become infinite at a finite mass, this divergence never occurs in nature as demon- 
strated by Wheeler (Figure 4). This is, however, not t rue in the case of neutron stars. 

5. THE STATIC STRUCTURE OF NEUTRON STARS 

5.1. The Equation of Stellar Structure 

Since the numerical value for GM/Rc* (the ratio of gravitational energy to  res t  energy) for a 
neutron star is close to  unity, it is necessary to consider the structure from a general relativis- 
tic point of view. Because of neutrino energy dissipation (Section 3.4), the temperature of the 
neutron core may always be taken to be zero. The pressure P may be taken to be a function of 
material density only (P and P a r e  all measured in proper coordinates). Further, we consider only the 
static structure of neutron stars with complete spherical symmetry and no rotation. Under these 
circumstances, the stress energy tensor becomes 

The equation of stellar structure is a solution of Einstein field equations with a time static and 
spherically symmetric metric (References 26 and 27). The equation is: 

and 

dm* 
dr - 
- -  

(5.3) 

Neglectingl/c2 terms, Equation 5.2 reduces to that for a non-relativistic gas sphere. At theradius 
of the star, m* is actually the gravitational mass observed by a distant observer (by the gravita- 
tional field the star produces). In the following we denote the proper mass (the mass before it 
was assembledinto a star)by m ,  the mass observed by distant observers by an asterisk*. 

The analytical properties of Equations 5.2 and 5.3 have been discussed by Oppenheimer and 
Volkoff (Reference 27). They found that the boundary conditions for an ordinary star apply (e.g., a t  
r = O , m *  0 , and the central pressure P, > 0, etc.).. 
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5.2. The Equation of State 

In order that a unique solution for Equations 4.2 and 4.3 be possible for a given set of bound- 
ary conditions, P must be a known function of p . We shall discuss the equation of state P ( p )  in 
greater detail. Because the interparticle spacing is of the order of 10-l3 cm or less, which is 
roughly the size of elementary particles, it is not possible t o  exclude the structure of elementary 
particles from our discussion as in the case of the white dwarfs. 

Before we proceed to the detailed structure of the equation of state, we would like to examine 
the limitations on the equation of state. 

a 5.3. The Unimportance of Quantum-Gravitational Effects 

Since the gravitational field inside a neutron star is extremely strong, one might wonder if 
quantum effects of the gravitational field may interfere with normal interactions among particles. 
However, quantum effects of gravitational field will, in general, not be important, as we shall 
show below. 

A well-knowntheorem in Riemannian geometry* states that, in a given space with a non- 
Euclidean metric, it is always possible to find a coordinate transformation such that locally at any 
given point the metric gMY may be reduced to  that for a Minkowskian space; that is, 

/-1 0 0 0 \ 

Unless the gpVfs change considerably over the dimension of elementary particles 
( : V m v c :  10-'3 cm) , it is not necessary to consider quantum effects of gravitational fields. Even 
in the extreme case when the mass of a neutron star is close to its critical mass, when the time 

'This i s  easily proven. The line element d s  may be written as :  

ds2 = C g i j d x i d x i  , 
i . 1  

where <gij} i s  the metric tensor and {x i} i s  a general s e t  of coordinates. Since {gij } i s  a symmetric tensor, at  a particular point {g ij} 

can be diagonalized by "rotating" the {x i }  coordinate system a t  this point. An additional s c a l e  change in the rotated {x'} system 
reduces the line element to 

ds2 = C*Sijdxidxi , 
1.1 

where S i j i s  the Kronecker delta and ' the  sign (*)  is chosen a s  to be consistent with the signature of Equation 13.1. Since gij varies with 
position,obviously this transformation is valid only a t  the particular point chosen. 
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metric goo vanishes at the center, quantum effects may still not enter. According to  Oppenheimer 
and Volkoff one can write generally, in the center of a neutron star: 

(5.5) 

when the mass of a neutron star approaches the critical mass,P,+m, the integral in the exponen- 
tial diverges logarithmically as one approaches the center, and goo vanishes as l/P (P+m). Unless 
P+mabruptly over a dimension of an elementary particle, goo cannot change substantially. This 
would not occur since the pressure is itself a macroscopic.concept. Hence the center of neutron 
stars is not likely to be the dwelling place of quantum gravitational field theory. 

k 

It might be questioned that, since the trajectories of particles with spin are not geodesics 
(References 28 and 29), this might be an indication that quantum-gravitational effects play an im- 
portant role. However, the spin-gravity interaction depends on the gradient of the gravitational 
field (spin-orbit type coupling) (References 28 and 29). Unless gm changes substantially over the 
dimension of an elementary particle, this interaction may be treated classically. Thus the cri-  
teria for replacing a gravitational field by an acceleration is the same for particles with spin or 
without spin. As long as the pressure retains its macroscopic meaning, locally we can always 
replace gravitational fields, however strong, by a uniform acceleration. In the following, we there- 
fore  neglect the quantum gravitational effects. 

5.4. Relativistic l imi ts  on the Equation of State 

General relativity does set up certain limits for the equation of state on the basis of positive 
(or negative, depending on which convention to follow) definiteness of the stress energy tensor, and 
that signals cannot propagate at a speed faster than light speed. 

The speed of sound vS for a given medium is given as 

v* = cg. c ,  

where E is the energy density. Integrating Equation 5.6 one obtains 

P < E .  

That is, the pressure must not exceed the energy density. 

This is a more relaxed limit for P . 
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In the case of a non-interacting ideal gas (includingphoton gas) the trace of the energy momen- 
tum tensor Tij  may be demonstrated to have a positive definite value (see, for example, Refer- 
ence 30); T i j  is given by: 

0 0  

Tij  = -P 
0 0 0 + E  

(5.8) 

Thus we have a more stringent condition on P: 

Only in the case of a photon gas one can have P = 4 3 .  This sets an upper limit for the speed of sound 
to be (i/fi)c. 

Recently, however, Zel'Dovich (Reference 3 1) constructed an example of a relativistically 
invariant theory for a classical vector field with a mass, interacting with stationary classical 
point charges. In this theory the energy density E and the pressure P are 

2ng2 n2 

P2 
P =  

(5.10) 

(5.11) 

I (units: % = c = 1) where M is the mass of the heavy particle, pthe mass of the field quanta, g the 
charge of the field quanta, and n the number density of heavy particles. In the limit of large n ,  

~ a n ~ a n d e : : : ~  . I 

One might argue that, since for a particle with mass the s t ress  energy tensor is 

T p v  = 5 P) upu' - 1 - prlPV 9 

C 2  (5.12) 

(where 7 p U  is the Minkowskian metric, up the four velocity) and that nothing can be "lighter" than 
a photon (for photon the rest mass is zero), P = 1/3 E should be the ultimate limit for all equations 
of state. Zel'Dovich's example indicates that such intuitive deduction is not correct. 

5.5. Detailed Structure of Matter at High Density 

The composition of matter at high density was considered in detail by Ambartsumyan and 
Saakyan (References 32 and '33). When the Fermi energy (including the rest energy) of neutrons 
exceeds the rest energy of strange particles, strange particles will be created in equilibrium with 
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neutron gas. Although it is necessary to  preserve the strangeness conservation law in the produc- 
tion process, in the decay process such a law need not be preserved and the number density for 
strange particles is govern'ed by their ability to decay. Thus, we do not need to  worry about the 
seemingly strangeness non-conserving character of reactions of the following type: 

n + n ++ A' + A' * (5.13) 

With this fact in mind, we now write down the reactions we will consider:* 

YO f n , 

I + e- + Y+, n , 

Y- ++ n + e- , 

e- 2 T -  , 

I (5.14) 

1 
where Y denotes one or more type of strange particles. Let the Fermi energy of particle x be 
denoted as E x ,  its number density by Nx . Since at zero temperature the Fermi energy is the same 
as the chemical potential, the equilibrium condition for Equation 5.14 is: 

(5.15) 

The reason for setting the chemical potential of T meson to its res t  energy is because it is a bo;on 
which allows infinite condensation at zero kinetic energy. Further, the charge neutrality condition 
gives an additional constraint: 

No T', p' are allowed because they will annihilate with T-,  P- to become photons (or neutrinos) 
which subsequently will escape. 

*The present approach is due to Ambartsumyan et al. (References 32 and 33). 
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From Equations 5.15 and 5.16 the following conclusions may be drawn: 

(1) The number density for e and p a r e  fixed independent of the material density once the 
Fermi energy of electrons reaches mTc*  . At extremely high density only baryons contribute to 
the pressure. The threshold for n meson creation occurs at a baryon density of 5.86 x 1040 
particles/cm3, or a material density of l O I 7  gm/cm3. 

(2) n meson is the only boson that can be present. It represents an energy resevoir without 
contributing to the pressure. Other bosons created (e.g., the intermediate boson) will decay into 
77 mesons directly or indirectly. 

The composition of matter becomes very complicated at high energy. Particles become ex- 
tremely densely packed. At a density of lo1' gm/cm3 the interparticle spacing is around 
4 x lo-" cm, which is about the radius of the repulsive core for protons and neutrons. Hence at 
such high density the interaction among particles is by no means negligible. The interacting 
energy is around 10 Bev in the e m  system (which corresponds to a laboratory energy of 100 Bev). 
Experimental study of interactions at such a high energy is somewhat beyond the present capa- 
bility. Our knowledge of the equations of state for closely packed neutron matter is therefore 
highly uncertain. 

5.6. Models for Neutron Stars 
We have seen that nuclear interactions among elementary particles at extremely high energy 

play an important role in the macroscopic behavior of dense neutron stars. In the following we 
shall demonstrate that there may exist a paradox between a very fundamental conservation law 
(baryon conservation law) and general relativity. From neutron star models with a hypothetical 
equation we may study the properties of this paradox which, if  resolved, should yield us  important 
information on extremely high energy interactions. 

We a r e  mostly interested in the singular character of the metric g o o .  In the following we 
shall review work done by other physicists on this subject. 

(a) Oppenheimer- Volkoff Theory 

The very first relativistic model for neutron stars was constructed by Oppenheimer and 
Volkoff (Reference 27). They assumed an equation of state of an ideal Fermi gas. Their mass- 
radius relation is demonstrated in Figure 4. The equilibrium mass m* (Equation 5.3) as a func- 
tion of density shows a maximum of 0.76 M, at a density of around 1OI6 gm/cm3 and then declines 
to 0.3 M, when the pressure P and the density P diverge at the center.* Since at the center m* = 0, 
we have, from Equation 5.5, 

J 
'The masses we talk about are masses observed by observers at large distances. 

(5.17) 
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goo approaches zero when p C + m .  Thus a singularity develops at the center when the mass is still 
finite. This singularity, unlike the Schwarzschild singularity, cannot be removed by a ,mere co- 
ordinate transformation (see Section 6). It may be a real singularity. 

(6) Cameron's Model* 

Following Oppenheimer-Volkoff's model, several other models have been constructed. 
Cameron (Reference lo), in particular, used an equation of state computed by Skyrme according 
to many-body theory, taking into account the nuclear interaction at low energy. Salpeter worked 
out a more complete equation of state computed on the basis of effective range theory. It agrees 
with Skyrme's theory in the low energy limit for which Skyrme's theory applies. Cameron's re- 
sult is shown in Figure 5. Again, a singularity ( goo = 0) develops at the center of his model star 
at a finite mass. The value of the critical mass is around 2 M,. 

(c) Wheeler e t  al. Hard Sphere Model 

Motivated by the use of repulsive core to interpret low energy nuclear interactions, Wheeler 
et  al. (Reference 19) studied the extreme case: the incompressible fluid for which the equation of 
state is 

h 

W 

6 
E, 
. 

131! 

P C P ,  9 (5.18) 

P = finite 

p = m  

where p, is some density. Despite this kind 
of equation of state i f  the mass is not too 
large, in general no singularities will ap- 
pear; but, for a given value of p,, there ex- 
ists a critical mass for which a singularity 
( g o o  = 0 )  appears at the center. Moreover, 
they found that 

(5.19) 

12 1 I I - _ -  I I I I I  

0 1 2 3 4 where M* is the mass of the star observed by 
distant observer, M is the mass of the ma- 
terial  that composes the star before the star 
is assembled, and Mcr is a critical mass de- 
pending on the value of p,. Hence a*/& = 0 

MIM, 

Figure 5-The mass-central d e n s i  tY p, relation in 
Cameron's model (Reference 10). Observable mass i s  m*; 
the proper mass i s  m as defined in Section 5.1. 

*G. S. Saakyan (Reference 34) recently has repeated the computation by Cameron a s  described here. He found a mistake in Cameron's 
paper, and that the value of the critical mass i s  not as high as Cameron claimed. 
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when M* = M~ . Moreover, they found that the ratio 

M* 
M 
- 

has a non-zero finite value even when M* = M,, . We shall explore the meaning and implications of 
this result in the following discussions. 

(d) Ambartsumyan-Saakyan Model 

Ambartsumyan and Saakyan (References 32 and 33) studied the neutron star models on the basis 
of their equation of state, taking into account strange particles. Their result is shown in Figure 6. 

1.2 

1 .o 
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M - 0.6 
Mo 

0.4 

0.2 

C 

1 I 1 1 I I I I 

, 

to 

50 55 60 65 70 75 80 85 90 

tan-' to 

Figure 6-The mass-t relation i n  Ambartsumyan and Saakyan's model; to i s  the value of t at the center of 
the star, where 

Curves la and Ib depict the mass of the star and i t s  hyperon core in  the case where elementary particles 
form an ideal gas at  any densities. Curves 20 and 2b present the same picture for the case where repulsive 
forces acting between baryons at  high densities (real gas) are taken into account. Black dots indicate the 
mass of configurations consisting of neutrons, with repulsive forces token into account. Hollow dots 
indicate the mass of those configurations consisting of an ideal neutron gas. (Calculations by Oppenheimer 
and Volkoff, Reference 27.) 
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Essentially there is no change in the conclusion that goo vanishes at the center at a finite 
mass. 

6. DYNAMIC COLLAPSE OF OVERSIZED NEUTRON STARS 

Although the four treatments of neutron star models have not exhausted the possibility of all 
types of equation of states, they do indicate that inevitably goo vanishes at the center for a finite 
neutron star mass. The question arises: Is this singularity unavoidable? Is there no way to save 
the face of physics by avoiding infinite pressure and density? In this section we would like to ex- 
amine the problem of the dynamical collapse of a star more closely, and the nature of the singu- 
larity with which we are faced. 

6.1. Schwarzschild Singularity and the Ultimate Mass l imi t  

For a point mass, the Schwarzschild solution for the metric has the form (Reference 26): 

ds2 = g . ,  dxil = - -- dr2 r 2  de2 - r 2  sin2 Odd2 + (- s ) d t 2  . 
11 2GM 1 - 7  

rc 

For a mass m ,  a singularity occurs at rs = XiM/c2.  That is, ds2 = m . Consequently no light signal 
can cross  this boundary defined by r = r s  .* For a proton, rs  2 cm. Since the radius of a 
proton is 10-l3 cm, i t  does seem that the Schwarzschild singularity may not play as important role in 
the structure of a proton. For massive objects like the sun, the Schwarzschild radius is around 
2.6 km, which is about the size of a neutron star of the same mass with a density of around 10l6 
gm. 

This singularity has been a subject of discussion among relativists ever since the solution 
was found. Is it a real singularity? Or is it just a singularity related to  a particular coordinate 
system? 

By a change of coordinates of r+Ty 8+8, +++, t+t , where F is related to r by the following 
relation t: 

Equation 6.1 becomes 

*we might remark that such behavior was first predicted by Laplace on the basis of a corpuscular theory of light. See Reference 35. 
?This coordinate system is known a s  the isotropic coordinate system. 
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where 

is the geometrized mass. In Equation 6.3 the singularity in F coordinates disappears. Hence it 
seems that the singularity at r = r s  is a coordinate singularity. 

Further, Robertson (Reference 36) has demonstrated that, by a coordinate transformation, one 
can eliminate this singularity in the following sense: An observer in the flat space observes the 
free fall of a test  particle towards the singularity. The time it takes the test  particle to cross  the 
boundary (which is at r s  = 2GM/c2) is infinite; this is because goo = 0 at the boundary and the test  
particle suffers infinite time dilatation as it approaches the singularity. However, if the observer 
moves with the test particle, the time duration that he observes for the test particle (and himself) 
to cross  the boundary isfinite. Hence, in the opinion of many relativitists, this Singularity is a 
coordinate singularity since it can be removed by a proper choice of coordinate systems (trans- 
formation to a co-moving frame). 

We regard the Schwarzschild singularity as a physical singularity in the following sense. 
Given a matter distribution such that initially nowhere within the matter distribution is r S . z  2 G M / c 2 .  

An observer observes this distribution of matter in a nearly flat space (since almost all points of 
the universe a r e  locally nearly flat). Since it takes an infinite time for this distribution of matter 
to cross  the Schwarzschild singularity, we may regard the Schwarzschild singularity to be a real, 
physical singularity. Once matter is found in a non-singular state, within the finite lifetime of 
the universe it wil l  remain in the non-singular state. 
were found in nature, it was created with the universe. 

Similarly, if  a Schwarzschild singularity 

Since all massive stars undergo supernova explosion, their cores will inevitably collapse to 
extremely high densities. It might be worthwhile to investigate whether they collapse asymptot- 
icallyintowithin Schwarzschild singularity or  not. It is of more importance to investigate, first,  
whether a singularity similar to Schwarzschild singularity exists in neutron s ta rs  with all possibil- 
ities of equation of state. 

A s  an interesting episode, w e  quote a paragraph from Eddington's momumental work on "The 
Internal Constitution of the Stars" (Reference 37): 

"The great bulk of these giant s ta rs  is due to low density rather than great mass.... It is rather 
interesting to notice that Einstein's theory of gravitation has something to say on this point. Accord- 
ing to i t  a s ta r  of 250 million km radius could not possibly have s o  high a density a s  the sun. 
Firstly, the force of gravitation would be so great that light would be unable to escape from it, the 
rays falling back to the s ta r  like a stone to the earth. Secondly, the red-shift of the spectral lines 
would be so great that the spectrum would be shifted out of existence. Thirdly, the mass would 
produce so much curvature of the space-time metric that space would close up round the s ta r ,  
leaving us outside (i.e., nowhere). The second point gives a more delicate indication and shows that 
the density is less than 0.001; for  even at that density there would be a red-shift of the spectrum too 
great to be concealed by any probable Doppler effect. 

hasten to add that i t  is to be found in the writings of Laplace*: 
Lest this argument should be regarded by our more conservative readers a s  ultra-modern, we 

~____ 
*Reference 35. 
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'A luminous star, of the same density a s  the earth, and whose diameter should be two hundred 
and fifty times larger than that of the sun, would not, in  consequence of its attraction, allow any of 
its rays to arr ive at us; it is therefore possible that the largest luminous bodies in the universe may, 
through this cause, be invisible.' " 

6.2. Will a Massive Star Collapse into a Neutron Star 
Without Being Singular? 

We have surveyed the work of many authors (which by no means exhausted all possible equa- 
tions of state) and we find that it seems inescapable that goo will vanish at the center of a neutron 
star i f  its mass approaches a certain limit, which is around 1 M, . 

There are several properties characteristic to this kind of treatment of a neutron star: 

(1) The res t  energy of a particle is c o m c 2  and at goo = 0 it takes no energy to create a 
pair of particles, nor does one gain any energy by annihilating a pair of particles. All photons 
emitted at points where goo = 0 will suffer infinite red shift and there will be no energy associ- 
ated with such photons. 

(2) The ratio of M*/M, is a well-defined number even when M* = M~~ in all cases. In Wheeler's 
work (Reference 19) this ratio is 2.8, and in Cameron's work (Reference 10) this ratio is 1.5. 

(3) Although only in the simple incompressible fluid case can one calculate dM*/dM = 0 at 
M* = M~,, we believe the result = 0 at M* = M~~ is universal because, in the case of incom- 
pressible fluid, this is due to goo = 0 at the center. Thus consider a star at the critical mass. If 
one adds to it one more gram of mass, this mass will not add to the observed mass of the star, but 
will be converted into energy - into a kind that can escape, namely, radiation. 

6.3. Wheeler's Theory 

One may be perturbed by the fact that the star now becomes a gravitational machine by which 
matter is converted into energy, thus violating the baryon conservation law. Gravitational ma- 
chines converting mass into energy are nothing new. Any gravitating body, in some sense, is a 
gravitational machine in the above sense. If we drop matter from infinity to the surface of the sun; 
roughly of its mass will be converted into energy which escapes, and this piece of matter 
will be gravitationally bound to the sun. However, i f  we pump energy into the sun to disintegrate 
it, we will reobtain nucleons. There is no ambiguity. 

In the case of neutron stars this does not seem to be so. At the critical mass limit the ratio 
of M*/M is a fixed constant of the order of 1/3. According to Equation 5.19, the stellar mass ap- 
proaches the critical mass when the original mass is finite. Beyond this point the star becomes a 
gravitational machine converting mass into energy. Thus the total number of nucleons is not a 
well-defined number. When we pump energy into the system to dissociate the star from its gravi- 
tational binding, we do not get all nucleons back - we only get a definite number (2 3.Mcr/tnp) back. 
Thus, the baryon number may not be a meaningful concept for a neutron star. 
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From this example Wheeler (References 19 and 25) concluded that the baryon number con- 
servation law must break down in a very dense star. We are open-minded to this kind of sug- 
gestion. Although the baryon conservation law has been demonstrated to high precision to be a 
valid concept in an ordinary nuclei (Reference 38), it has always been postulated only as an 
empirical law (e.g., Reference 39). 

The origin of this law is still unclear. Moreover, we do not know what this law actually means 
when baryons are closely packed to within their structure (5 repulsive core radius). It certainly 
poses an extremely interesting and meanwhile difficult problem. The final solution, as we have 
seen in Section 5.3, must come from extremely high energy physics. 

6.4. Oppenheimer-Snyder Theory 

Oppenheimer and Snyder (Reference 40) had approached the problem of collapse in the follow- 
ing manner: In the absence of the pressure, the collapse may be treated analytically. They com- 
puted the world trajectories of material bodies falling towards a common center under the gravi- 
tational field produced by these material bodies. They obtained the following result: To an 
external observer these particles f a l l  toward the Schwarzschild singularity asymptotically and the 
total time of fall is infinite. This is because of the infinite time dilatation effect mentioned 
earlier.  To a local observer, the time is finite; and, for the case of the sun, it is of the order of 
1 day. Since the star continues to fall indefinitely, the star is always in some dynamical motion 
and this is consistent with the fact that no static structure for such a star exists i f  its mass ex- 
ceeds a certain limit. 

We do not regard this resolution as satisfactory, since the pressure P cannot be neglected in 
the case of a neutron star;  from what others have demonstrated (References 19, 31, 32, and 33), 
P z p  C *  and therefore cannot be neglected. Their solution, however, may be of cosmological sig- 
nificance. We shall discuss further possible solutions to this problem in Section 9. 

7. ANGULAR MOMENTUM AND STELLAR COLLAPSE 

We have delayed the discussion of the effect of angular momentum up to now - not because it 
is not important, but because it leads to very interesting consequences: namely, the possibility 
of gravitational radiation from a rapidly rotating neutron star, and the possibility of their 
detection. 

The moment of inertia of a spherical body of radius R ,  mass M , and of uniform density p is: 

The angular momentum IW is a conserved quantity (where w is the angular velocity). For a normal 
star R 10" cm and the period of rotation is around 1 day. Thus, 

IW a R 2 u  2 6 x loi7 . (7.2) 
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The centrifugal force fc per unit mass at the equator of the star is 

where veq = RW is the speed at the equator. Since fc < MG/R~ (otherwise the star will be torn apart  
by rotation), we have the upper limit on R : 

( R 2 w ) 2  < %  
R 3  R3  

or 

[R2 w )  
R >  MG * 

(7.3) 

(7.4) 

This is the minimum radius to which a rotating star may collapse. UsingM = 20 M o t  and the value 
of RZ LO' given by Equation 7.2, w e  find that 

R > 1 0 8 c m  , (7.5) 

and at this limiting value of R the angular velocity o is around 1 rad/sec, and the period is around 
0.1 sec. 

Although a rotating body with cylindrical symmetry does not radiate gravitational waves, 
there is no reason that a rapidly rotating body should preserve its cylindrical symmetry. 
classical Jacobi ellipsoid is an example: a homogeneous, uniform density fluid held together by 
its gravitational field can assume the shape of an ellipsoid with the axis of rotation perpendicular 
to the long axis of the ellipsoid. As an estimate we apply to our rotating star the formula of 
gravitational wave radiating power computed for a spinning rod (References 41, 42, and 43). The 
radiating power is 

The 

3X12 w6 

5C5 
P =  (7.6) 

The rotational energy is 1/2 ( I w 2 ) .  Hence the relaxation time T for the star to lose its angular 
momentum is 

5c5 
64CIw4 

7- = - .  (7.7) 

For the parameters we consider, we find T 2 50 seconds. Although this is longer than the time of 
dynamical collapse as calculated by Colgate (Reference 7), it is quite small compared with the 
lifetime of a neutron star, which we shall compute. 

Weber thinks such gravitational radiation is detectable (References 41 and 44). 
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8. OBSERVABLE FEATURES OF NEUTRON STARS 

8.1. Energy Content of a Neutron Star 

We now shall calculate the energy content of neutron stars. The Fermi energy of neutrons 
(and hyperons) averaged over the star cannot be greater than mn c2; otherwise the gravitational 
energy of the star will exceed its rest energy and the star will be within its Schwarzschild radius. 
Further, i f  the temperature is too high, neutrino processes will quickly dissipate its thermal 
energy. Hence the temperature must be below a certain limit. From these cri teria the tempera- 
ture of neutron stars is thus estimated to be lo9%, assuming they were formed earlier at  a high 
temperature. The relaxation time for cooling by neutrino emission at this temperature by plasma 
neutrino process and pair  annihiliation process (References 21-23 and 45) is greater than 10 
years, which will be the lifetime of neutron stars against optical emission (see next section). 

We now apply the theory of a nearly zero temperature ideal Fermi gas to find the thermal 
energy. The specific heat per unit mass is given as Reference 17 . 

wherex = pF(n)/mn ~ Z a n d  p i n )  is the Fermi momentum for  the neutron gas. The total thermal 
energy c t h  is given by 

As we have remarked before, the overall average of E, is less  thanm, c2. 

very much different from unity. Taking T = lo9% and x = 1, we find that 
Therefore x is never 

~ ~ - 1  = 0 .75  10-4 (8.3) 

and 

E t , ,  2 4.6 x 1013 ergs/gm . (8.4) 

The total thermal energy of the neutron star is % M 

energy of the sun. 
= lo4’ ergs,  which is about the thermal 

The neutron core is not composed of neutrons alone. Hence the thermal energy is a sum over 
all particle energies. In this case, the value of x will be somewhat smaller than 1. The thermal 
energy of a neutron star may be several times greater than the value estimated here. 

8.2. Physical Properties of the Surface of a Neutron Star 

The surface of a neutron star must consist of ordinary matter since, when p 1 O I 2  gm/cm3, 
the composition of matter is predominantly iron group elements. Thus we can picture a neutron 
star as a centrally condensed neutron core, surrounded by a layer of nearly iron group elements. 
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If the interior temperature of a neutron star is taken to be lo9%, then when p > 106 gm/cm3 the 
iron group elements will become degenerate. Since the thermal conductivity of a neutron core and 
the degenerate layer is very high, we need only consider the nondegenerate ordinary-stellar- 
matter envelope which contributes mostly to the overall opacity of the star. 

The iron group elements have very high values of z and the ionization temperature in the 
k-shell electrons is around 0.015 MeV, which corresponds to a temperature of lo*%. The absorp- 
tion coefficient exhibits a very sharp edge (absorption edge). At the ionization energy the absorp- 
tion cross section may be as high as em2. On the average, the mean free path of radiation 
may be as short as 0.1 gm/cm2. When T > 108"K, the main source of opacity is due to Compton 
scattering. The opacity is a constant. The mean free path of photons is roughly 5 gm/cm2. 

As a rough estimate we now apply the theory of white dwarf atmosphere to a neutron star 
(Reference 46). Assuming the main source of opacity to be due to the absorption edge of k-shell 
electrons, the radial dependence of temperature and density is: 

(; - 1)3-25, 

T a (; -1) 9 

(8.5) 

where R is the radius of the neutron star and the proportional constant is determined by the mean 
density of the star. For a neutron star of mean density <p> = 10 l5 gm/cm3, R is around 10 cm. 
Thus 

Taking p = l o 6  gm, we find A r  = R : 10 cm. Material contained in the envelope in 
gm/cm2 is roughly [' pAfr 2 108 gm/cm2. The number of scatterings a photon suffers in leaving 
the envelope is roughly p dr h 2 lo8 ,  where A is taken to be 5 cm/gm-cm '. s, 

To estimate the luminosity, we use an intuitive theory due to J. Steinberger.* Consider the 
following experimental setup: A series of parallel infinite plates of perfect blackbody proper- 
ties is set  up as in Figure 7. Let the temperature of the nth parallel plate be Tn I and let T, be 
fixed. The energy flow is assumed to be completely radiative. When a steady state of energy 
flow is reached, it is easy to verify the following relation: 

= acT:-, - acT: = acT2 . 
*Private communication. 
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where a is the Stefan-Boltzmann con- 
stant and c the velocity of light. From 
this equation we obtain a relation be- 
tween TI  and Tm: 

DIRECTION OF FLOW 
OF RADIATION 

acT: 
acTP = - m (8.9) 

Photons are continuously absorbed 
and reemitted by atoms or nuclei. In 
the atmosphere ofa  star the atoms are 
like the parallel plate in Steinberger's 
model for radiative transfer. The 
energy radiated from a unit area 
on the surface of a neutron star is properties. 

Figure 7-An extremely simp1 if ied model of stellar atmospheres. 
The plates are made from materials with perfec,t blackbody 

( T ~  ", 109%) 

acTP 

14 x lo8 f =  ~ z 5 x 1 0 2 3  ergs/cmZ-sec 

The overall luminosity L is thus 

L = 4nr* f 1 0 3 7  ergs/sec . 

(8.10) 

(8.11) 

The maximum of the spectral frequency corresponds to T = l o 7  %. We have computed the energy 
content of a neutron star to be 
will  last for at most 1OOOyears. Howev$r, as the temperature is reduced, the rate of energy radia- 
tion will  be reduced, too; whenT, = .lo*'%, the luminosity L will  be reduced to around 
value given in Equation 8.11 and the lifetime wil l  be around l o4  years, with a maximum on the 
spectral frequencyT 2 lo6'% (0.1 kev). 

ergs. A neutron s ta r  radiating energy at  such a lavish rate 

of the 

8.3. Observational Problem 

Our atmosphere is transparent only to radiation in the following wavelength region (e.g., Ref- 
erence 47): 3000A-+7000A (visible), 8000A+12,000A (infrared window), 1 cm-10 meters (micro- 
wave), and 200 meters-infinity (low frequency radio wave). 

Interstellar matter consists mainly of hydrogen, and it is extremely opaque to radiation of 
wavelength near the Lyman continuum ( 2  1000A). Since the absorption coefficient exhibits a sharp 
edge and has a h3 dependence, for frequencies other than that near the Lyman continuum it is 
relatively transparent. 
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The surface temperature of neutron stars is around 106-3107%. Burbidge (Reference 48) 
has estimated the red shift and he found that, i f  the neutron stars have a very small envelope (as 
we have calculated), the light from such stars may suffer a red shift as large as h/2. Hence the 
temperature observed by distant observers will be one-half the value a t  the surface. The red 
shift will therefore reduce the observable temperature by at most a factor of 2. 

The maximum in Planck's formula for T = 106-+3107"K is between 1OOA and 1OA (in-between 
UV and x-ray bands). Both lie in a region where interstellar absorption is not large. The mean 
free path is around lo5  light years, assuming an interstellar hydrogen density of 1 particle/cm3. 
We remark that this wavelength region is very difficult to observe experimentally. 

The fraction of this radiation energy RV that will pass through our atmospheric window is 
easily seen to be given by 

R V  
x3 dx 
ex - 1 

- 9  

where x = hv/kT . For small values of x, since ex 1 + X, we have 

Rv - x3 . 
7T4 

(8.12) 

(8.13) 

For kT = 50 ev ( T  2 5 X lo5%),  hv = 5 ev (corresponding to X 2 3000A), we find that 

R~ 2 5 10-5 . (8.14) 

Thus, for a neutron star of internal temperature lo8  "K it will have a luminosity of z 1CY6L0. For 
such low luminosity stars, the star has to be, borrowing a comment from Greenstein, * "practically 
inside the solar system in order to be observable by the world's largest  telescope, the 200 inch 
Mount Palomer telescope." Hence, it is not surprising that no neutron stars have ever been found. 

Since in our picture every supernova star will inevitably become a neutron star, we can esti- 
mate their numbers in our galaxy. Taking the age of our galaxy to be 1Ol0 years, and the rate of 
a supernova explosion to be roughly lO-*/year (References 8 and 9), we find the total number of 
neutron stars in our galaxy to be l o s ,  of which possibly ten will  have a surface temperature of 
about 1070K, and possibly lo2 will have a surface temperature of about 106'K. 

*Private communication. The author is indebted to him for an enlightening discussion on the nature of peculiar radio sources which 
were once considered to be neutron stars. However, J. Greenstein demonstrated that they cannot be neutron stars (Reference 49) .  
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With the use of proper instruments mounted in an earth satellite now available f o r  scientific 
research, such neutron stars should be yeadily detectable. (See footnote on page 41,  however.) 

Moreover, since most stars possess rotation, the rotational energy will be dissipated, during 
. the collapse phase, into gravitational waves. Such waves should be detectable. Instruments de- 

signed by Weber and his associates (References 41 and 44), if perfected to their expectation, 
should be able to detect such waves many galaxies away. Thus their instruments may be used to 
detect supernova explosions. We remark that their instruments are more sensitive than the 
neutrino monitor station suggested previously (References 1 and 21). 

9. DISCUSSION 

The central point of the paradox presented by Wheeler is essentially the following: Given a 
neutron star, assuming one can add to its mass (hence the nucleon numbers) until it reaches the 
critical value; then at this critical value a singularity (goo  = 0 )  develops at the center. Unlike the 
Schwarzschild singularity this singularity cannot be removed by performing a coordinate trans- 
formation. Further addition of mass to the star will not increase its mass nor its nucleon number. 
All nucleons added to it will be converted into radiation energy. This essentially violates the 
empirical law that baryons cannot be destroyed in any reaction. Since the existence of the critical 
mass is inevitable, Wheeler concluded that the baryon conservation law must be violated in super- 
dense stars. 

We have examined this problem and our conclusions are the following: 

(a) The absence of quantum-gravitational effects: Inside a neutron star the gravitational field 
has to interact with the elementary particle field classically. This is because the gradient of the 
gravitational field is extremely small as compared with the gradients of nucleon, electromagnetic, 
etc. fields. By the principle of equivalence, one can replace a uniform gravitational field by a 
uniform acceleration. Thus the equation of state may be computed without regard to any gravita- 
tional field present. 

(b) Wheeler argued that one cannot get away from this difficulty by proclaiming that the whole 
star falls through the Schwarzschild singularity. The problem poses, as he calls it, "a problem of 
principle." No one can forbid an observerfrom adding one extra gram of matter to a star already 
at the critical mass. 

We would like to remark that it is by no means clear how this singularity is developed. It 
depends strongly on the equation of state. On the central density-mass curve (Figure 4) a maxi- 
mum is found. Beyond this maximum, in most cases the gravitational binding energy of the neutron 
star is positive. This means the critical mass cannot be reached statically. Moreover, we know 
that, if the mass decreases with increasing central density, the stellar configuration is not a stable 
one. Hence, then the problem of the critical mass must be treated dynamically. We also note that 
the maximum in the mass is reached when the star is still free from singularity. 

If the existence of the mass maximum is inevitable, the static problem as posed by Wheeler 
is irrelevant to the dynamical collapse of a star (the only way a neutron star may be formed). 
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Neglecting the pressure term in the stress energy tensor, Oppenheimer and Snyder (Refer- 
ence 40) found that the star collapses toward the Schwarzschild singularity asymptotically. In 
reality the pressure cannot be neglected - in fact, P % p c 2 .  The essential questions a r e  there- 
fore: If one takes into account the pressure, does a real  singularity such as goo = 0 develop at 
the center first? Or does the star still f a l l  through the Schwarzschild singularity asymptotically? 
These are certainly relevant questions to ask. They can be answered theoretically by a further 
study of neutron star models. 

* 

(c) Another type of equation of state: S. Weinberg* posed the following argument. An in- 
compressible fluid may be regarded as composed of particles with a repulsive potential between 
them. Although they are the hardest equations of state one can think of, they also carry an in- 
definitely large amount of energy. Since the s o w c e  of gravitational field is energy itself, one 
gets into infinite trouble by letting the energy be infinitely large. He therefore suggested 
the following: Let there be an attractive force of small range. When matter is compressed 
hard enough, the attractive force will come into play and local clustering of particles will occur, 
forming quasi-bound states. The energy of the system will be decreased by the amount of the 
binding energy. One can thus increase the mass limit for neutron stars by letting local cluster- 
ing of particles take place. 

If one piles all the mass of the universe into a neutron star and considers Wheeler's 
static problem, then essentially, if one still wants to save the baryon conservation law, the 
binding energy of these clusters must be of the order of the rest energy of the particles 
themselves. Such a super-strong field has not been observed in present high energy physics 
experiments. 

If the fine structure constant is of order unity, a number of interesting things will happen. 
Pairs of electrons will be created spontaneously into bound states; yet these bound pairs have 
zero energy. In order that such thing be possible for baryons, the strength of the coupling f 2 h ~  
must be at least 100 times stronger than that for the strong interaction. In order not to conflict 
with the present knowledge of elementary particles, the range of this super-strong interaction 
cannot exceed, say, cm. Since a binding among all pairs is assumed (attractive force), the 
interactions must be scalar o r  tensor in character. The quanta associated with such a field must 
be around 100 times the 7~ meson mass, or 20 times the nucleon mass. 

Of course, what we have suggested is purely speculative. A star which collapses to within its 
Schwarzschild singularity will gradually become invisible. On the other hand, if d star can get r id 
of its mass-energy by resorting to baryon non-conservation or  the existence of such a hypothetical 

'Private communication. The author first learned this idea from Professor C. W. Misner, who believed he was quoting Dr. Weinberg. 
When the author asked Dr. Weinberg, he insisted that he was misquoted by one of u s  (H. Y .  C. or C. W. M.). Nevertheless, he admitted 
later that this idea might work. His original idea applied to model universes a s  a whole, but he thinks this idea may work inside a 
neutron star too. The author feels  that, although the present idea originates from misquotations, Dr. Weinberg nevertheless should de- 
serve the credit of being the originator. 
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super-strong interaction, the remaining body should be observable with approximately the surface 
characteristic discussed in Section 8. They a re  certainly observable. 

10. CONCLUDING REMARKS* 

In this paper the final evolution of a pre-supernova star is reviewed. It seems inevitable that 
the star will end up as a neutron star with a radius of around lo6 cm and a surface temperature of 
around lo6 - lO7OK. A critical mass limit exists for neutron stars. Beyond this mass limit no 
static structure is possible. Neutron stars can only be detected by extra-terrestrial x-ray 
telescopes. If detected, they pose interesting questions on our present theory of fundamental 
particles. 
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Appendix A 
Virial Theorem 

Now we derive the virial theorem. Defining v = (47r/3)r3 and multiplying both sides of Equa- 
tion 2.9 by V, we have 

We now integrate Equation (Al)  over the star. Partially integrating J V dp, we have 

since, a t  r. = 0, V = 0; and, at r = R (radius of the star), P = 0. Thus, we have the relation 

If a relation between P and E (energy density) exists, Equation (A3) relates the gravitational 
energy of a star to its thermodynamic energy. For a non-relativistic gas P = 2/3E; and forare l -  
ativistic gas, P = 1/3E. Thus the total energy ET of a star is 
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